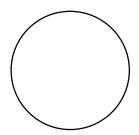
I. Random Concepts Review

- Concept of probability, event, random variable (RV)
- Concept & properties of cumulative distribution function (CDF), probability density function (PDF)
- Mean, moment, skewness, kurtosis
- Useful RV: uniform, Gaussian
- Random vector definition, characterization, statistical description
- Correlation/Covariance matrices: definition & properties
- Cross-correlation, cross-covariance matrices: definition & properties
- Random vector linear transformation
- Central limit theorem

I. Random Concepts Review

- **❖** What is a Probability:
- **♦** What is an Event:

♦ What is a Random Variable (RV):



Example: Coin tossed 3 times

* sample space $S = \{$

3

- Cumulative Distribution Function (cdf):
- **CDF Properties:**
 - lacktriangle
 - lacktriangle
 - lacktriangle
 - •
- * Probability Density Function: $f_x(x) =$
 - •
 - •

- * RV completely characterized by pdf
- pdf information can be summarized by key aspects called statistical averages or moments

(1) mean/average

•
$$E\{x\} = m_x =$$
 if x is discrete
= if x is continuous

• important property of the mean → linearity!

$$E\{\alpha x + \beta\} =$$

$$E\{g(x)\} =$$

(3) moments

•
$$r_x^{(m)} = E\left\{x^m\right\} =$$

• $\sigma_x^{(m)} = E\left\{\left|x - m_x\right|^m\right\} =$

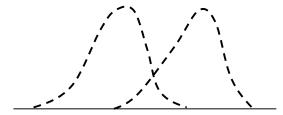
- variance = $\sigma_x^{(2)}$
- variance property: $\sigma_x^2 = E[|x|^2] (E[x])^2$ proof:

Useful Moments:

Skewness

measures degree of asymmetry of distribution around the mean

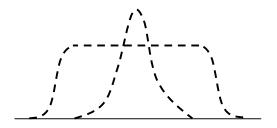
$$k_x^{(3)} = E\left\{ \left(\frac{x - m_x}{\sigma_x} \right)^3 \right\} =$$



Kurtosis

measures relative flatness or peakedness of distribution about its mean

$$k_x^{(4)} = E\left\{ \left(\frac{x - m_x}{\sigma_x} \right)^4 \right\} - 3$$

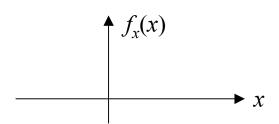


Note:
$$k_x^{(4)} = 0 \quad \text{for normal distribution}$$

❖ <u>Useful RVs</u>:

(1) Uniform RV

$$f_{x}(x) =$$

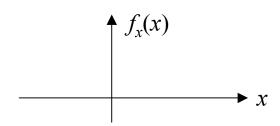


mean/variance:

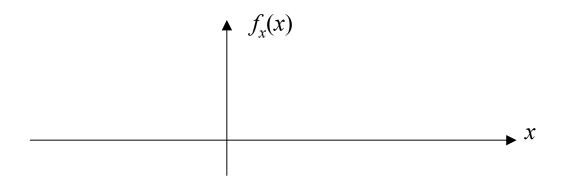
8

(1) Normal RV

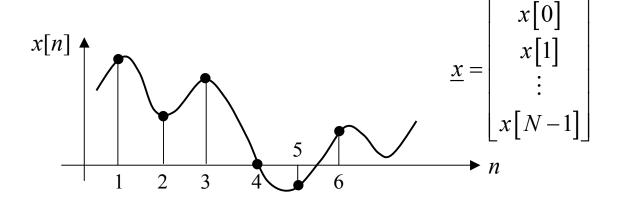
$$f_x(x) =$$



Property



* Random Vector:



- Group of signal observations can be modeled as a collection of RVs that can be grouped together to form a random vector.
- Random Vector Distribution:

→ Random vector completely defined by its joint distribution function.

• Random Vector Density:

- Complex Random Vector:
 - Complex Random Variable:
 - Complex Random Variable Mean / Variance:

• Complex Random Vector:

* Random Vector Statistical Description:

(1) Mean Vector:

$$\underline{m}_{\underline{x}} = E\left\{\underline{x}\right\} = \boxed{}$$

where:

(2) Correlation/Covariance Matrices:

Correlation matrix

$$R_{\underline{x}} = E\left\{\underline{x} \cdot \underline{x}^{H}\right\} = E\left\{\begin{array}{c} \\ \end{array}\right.$$

$$E\left\{\left|x_{i}\right|^{2}\right\} =$$

$$E\left\{x_{i} \cdot x_{j}^{*}\right\} =$$

Covariance matrix

$$C_{\underline{n}} = E\left\{ \left(\underline{x} - \underline{m}_{\underline{x}} \right) \left(\underline{x} - \underline{m}_{\underline{x}} \right)^{H} \right\}$$

Covariance/Correlation Matrices are related:

$$C_{\underline{x}} = R_{\underline{x}} - m_{\underline{x}} m_{\underline{x}}^H$$

• Proof:

Correlation Matrix Properties:

- (1) Conjugate symmetry
- (2) Positive semi-definite

Proofs:

Eigendecomposition and PSD (positive semi-definite)
 Matrix A is said to be PSD iff \(\frac{\partial}{A}(A) \geq 0\)
 Matrix A is said to be PD (positive definite)

iff
$$(A) > 0$$

• Example:
$$B = \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix}$$
 PSD?

* Cross-Correlation and Covariance Matrix:

$$\bullet \ R_{xy} = E\left[\underline{x}\underline{y}^H\right]$$

•
$$C_{xy} = E\left\{ \left(\underline{x} - \underline{m}_{\underline{x}} \right) \left(\underline{y} - \underline{m}_{\underline{y}} \right)^{H} \right\}$$

$$\bullet \quad C_{xy} = R_{xy} - \underline{m}_{\underline{x}} \cdot \underline{m}_{\underline{y}}^H$$

- Properties:
 - (1) 2 random vectors are said to be *uncorrelated* if:
 - (2) 2 random vectors are said to orthogonal if:

(3) when
$$\underline{m}_{\underline{x}} = \underline{0}$$
 or $\underline{m}_{\underline{y}} = \underline{0}$

$$\underline{x} \& \underline{y} \text{ uncorrelated} \implies \underline{x} \& \underline{y} \text{ orthogonal}$$

(4) if a vector has orthogonal components, then

$$E\left\{x_{i}x_{j}^{*}\right\} = 0$$
 when $i \neq j$

$$\Rightarrow R_x =$$

- •Note: "correlatedness" is different from independence
 - •Recall: to check independence: if $x_1(\xi)$ and $x_2(\xi)$ are independent

$$f_{x_1,x_2}(x_1,x_2) = f_{x_1}(x_1).f_{x_2}(x_2)$$

=> $E\{x_1(\xi)x_2(\xi)\} = E\{x_1(\xi)\}E\{x_2(\xi)\}$

Consequence: independence uncorrelated

Normal Random Vector:

(1) Real random vector

(2) Complex random vector

- (3) Important properties of normal random vectors
 - pdf completely specified by mean+ matrices
 - if components of \underline{x} are mutually uncorrelated \Rightarrow they are independent
 - if \underline{x} is normal $\Rightarrow \underline{y} = A\underline{x}$ is normal

❖ <u>Linear Transformation for Random Vectors</u>:

$$\rightarrow \underline{y} = A\underline{x}$$

Mean vector

$$E\left[\underline{y}\right] =$$

Correlation matrix

$$R_{y} = E\left[\underline{y}\,\underline{y}^{H}\right] =$$

Covariance matrix

$$C_{v} =$$

Central Limit Theorem (CLT):

Describes the limiting behavior of the distribution function of a normalized sum of I.I.D. variables

Define:

$$z_n = \frac{S_n - nm}{\sigma \sqrt{n}}$$

where
$$s_n = \sum_{i=1}^{n} x_i$$
; $m = E[x_i]$; $\sigma^2 = \text{var}[x_i]$

As n gets large, $z_n \sim N(0,1)$ As n gets large, $s_n \sim N(nm, n\sigma^2)$

Example: Application of the CLT

Suppose orders at a restaurant are IID with a mean price m=\$8.00 and standard deviation σ =\$2.00. Estimate the probability that the first 100 customers spend a total of more than \$840.00